The circle is complete: Mites, trichomes, walking speed and EthoVision XT

The circle is complete: Mites, trichomes, walking speed and EthoVision XT

Posted by Olga Krips on Tue 02 Aug. 2022 - 1 minute read

In my previous life as Entomologist, in the ‘90s of the previous century, I was a pioneer in video tracking with extremely small creatures. I worked with mites, which are about 0.5 mm in size. In fact, I was an overall pioneer in video tracking, I worked with one of the first versions of EthoVision

The application was running on DOS, which was a challenge in itself. But, that challenge was negligible compared to detecting the tiny mites on leaf discs that had all sorts of shadows and reflections from plant nerves and trichomes. However, somehow I managed, and one of my first publications was on the effect of trichomes on the walking speed of predatory mites, in relation to host plant resistance to spider mites, their prey. [1]

The same topic, 25 years later

Now, 25 years later, after having been a Noldus employee for almost 13 years, I am writing a blog on the research by Patrice Jacob Savi and his colleagues about trichomes, host plant resistance, walking speed, mites, and EthoVision XT [2]. This makes my circle complete. 

Patrice Jacob Savi showed that the walking speed and mobility of the red tomato spider mite drastically goes down on tomato genotypes with a high density of glandular trichomes. Also, these genotypes are highly resistant to the spider mites. This is very promising for plant breeding for resistance to the red tomato spider mite, which is serious pest species on tomato.









FREE TRIAL: Try EthoVision XT yourself!

Request a free trial and find out what EthoVision XT can do for your research!

  • A cost-effective solution
  • Powerful data selection
  • Most cited video tracking system


How life has become easier

So has nothing changed over the past 25 years? On the contrary, life of an Entomologist has become so much easier with EthoVision XT. Firstly, the application now has much better methods to distinguish the animal from the background. So the struggle that I had to detect the mites is solved. 

Secondly, the camera quality has increased dramatically. This means that you can record a much larger surface area, which gives the possibility to scale up your research. It is now possible to run 300 video tracking trials with insects simultaneously. Check out how that works here: https://www.noldus.com/entolab

References

  • Krips, O., Kleijn, P., Willems, P. et al. Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol23, 119–131 (1999). https://doi.org/10.1023/A:1006098410165
  • Savi, P.J., de Moraes, G.J., Carvalho, R.F. et al. Bottom-up effects of breeding tomato genotypes on behavioural responses and performance of Tetranychus evansi population. J Pest Sci95, 1287–1301 (2022). https://doi.org/10.1007/s10340-021-01437-5
Don't miss out on the latest blog posts
Share this post
Topics
Learn
more
Relevant Blogs
traumatic-brain-injury-research

Three examples of swimming rats in traumatic brain injury research (TBI)

The Morris water maze and EthoVision, a validated solution to investigate learning and memory in rats and mice.
berry-spruijt-says-goodbye

Prof. Berry Spruijt says goodbye (but not really)

Prof. Dr. Berry M. Spruijt recently retired from his position at Utrecht University. I had the honor of attending the symposium that was organized to reflect on and celebrate his career.
gammarus

Nearly impossible to video track: small shrimp

Gammarus shrimps are exceptionally difficult to track, but Noldus solved the puzzle, resulting in interesting insights into its ecology.